1,383 research outputs found

    Hiring Costs of Skilled Workers and the Supply of Firm-Provided Training

    Get PDF
    This paper analyzes how the costs of hiring skilled workers from the external labor market affect a firm's supply of training. Using administrative survey data with detailed information on hiring and training costs for Swiss firms, we find evidence for substantial and increasing marginal hiring costs. However, firms can invest in internal training of unskilled workers and thereby avoid costs for external hiring. Controlling for a firm's training investment, we find that a one standard deviation increase in average external hiring costs increases the number of internal training positions by 0.7 standard deviations.hiring costs, apprenticeship training, firm-sponsored training

    Bell's inequality test with time-delayed two-particle correlations

    Full text link
    Adopting the frame of mesoscopic physics, we describe a Bell type experiment involving time-delayed two-particle correlation measurements. The indistinguishability of quantum particles results in a specific interference between different trajectories. We show how the non-locality in the time-delayed correlations due to the indistinguishability of the quantum particles manifests itself in the violation of a Bell inequality, where the degree of violation is related to the accuracy of the measurement. We demonstrate how the interrelation between the orbital- and the spin exchange symmetry can by exploited to infer knowledge on spin-entanglement from a measurement of orbital entanglement.Comment: 8 pages, 4 figure

    Vortex Entanglement and Broken Symmetry

    Full text link
    Based on the London approximation, we investigate numerically the stability of the elementary configurations of entanglement, the twisted-pair and the twisted-triplet, in the vortex-lattice and -liquid phases. We find that, except for the dilute limit, the twisted-pair is unstable and hence irrelevant in the discussion of entanglement. In the lattice phase the twisted-triplet constitutes a metastable, confined configuration of high energy. Loss of lattice symmetry upon melting leads to deconfinement and the twisted-triplet turns into a low-energy helical configuration.Comment: 4 pages, RevTex, 2 figures on reques

    Experimental study of electric breakdowns in liquid argon at centimeter scale

    Full text link
    In this paper we present results on measurements of the dielectric strength of liquid argon near its boiling point and cathode-anode distances in the range of 0.1 mm to 40 mm with spherical cathode and plane anode. We show that at such distances the applied electric field at which breakdowns occur is as low as 40 kV/cm. Flash-overs across the ribbed dielectric of the high voltage feed-through are observed for a length of 300 mm starting from a voltage of 55 kV. These results contribute to set reference for the breakdown-free design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC)

    Dynamics and stability of vortex-antivortex fronts in type II superconductors

    Get PDF
    The dynamics of vortices in type II superconductors exhibit a variety of patterns whose origin is poorly understood. This is partly due to the nonlinearity of the vortex mobility which gives rise to singular behavior in the vortex densities. Such singular behavior complicates the application of standard linear stability analysis. In this paper, as a first step towards dealing with these dynamical phenomena, we analyze the dynamical stability of a front between vortices and antivortices. In particular we focus on the question of whether an instability of the vortex front can occur in the absence of a coupling to the temperature. Borrowing ideas developed for singular bacterial growth fronts, we perform an explicit linear stability analysis which shows that, for sufficiently large front velocities and in the absence of coupling to the temperature, such vortex fronts are stable even in the presence of in-plane anisotropy. This result differs from previous conclusions drawn on the basis of approximate calculations for stationary fronts. As our method extends to more complicated models, which could include coupling to the temperature or to other fields, it provides the basis for a more systematic stability analysis of nonlinear vortex front dynamics.Comment: 13 pages, 8 figure

    Thermal Suppression of Strong Pinning

    Full text link
    We study vortex pinning in layered type-II superconductors in the presence of uncorrelated disorder for decoupled layers. Introducing the new concept of variable-range thermal smoothing, we describe the interplay between strong pinning and thermal fluctuations. We discuss the appearance and analyze the evolution in temperature of two distinct non-linear features in the current-voltage characteristics. We show how the combination of layering and electromagnetic interactions leads to a sharp jump in the critical current for the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let

    Casimir Force between Vortex Matter in Anisotropic and Layered Superconductors

    Full text link
    We present a new approach to calculate the attractive long range vortex-vortex interaction of the van der Waals type present in anisotropic and layered superconductors. The mapping of the statistical mechanics of vortex lines onto the imaginary time quantum mechanics of two dimensional charged bosons allows us to define a 2D Casimir problem: Two half-spaces of (dilute) vortex matter separated by a gap of width R are mapped to two dielectric half-planes of charged bosons interacting via a massive gauge field. We determine the attractive Casimir force between the two half-planes and show, that it agrees with the pairwise summation of the van der Waals force between vortices previously found by Blatter and Geshkenbein [Phys. Rev. Lett. 77, 4958 (1996)]Comment: 11 pages, 3 figure

    Investigating The Vortex Melting Phenomenon In BSCCO Crystals Using Magneto-Optical Imaging Technique

    Full text link
    Using a novel differential magneto-optical imaging technique we investigate the phenomenon of vortex lattice melting in crystals of Bi_2Sr_2CaCu_2O_8 (BSCCO). The images of melting reveal complex patterns in the formation and evolution of the vortex solid-liquid interface with varying field (H) or temperature (T). We believe that the complex melting patterns are due to a random distribution of material disorder or inhomogeneities across the sample, which create fluctuations in the local melting temperature or field value. To study the fluctuations in the local melting temperature / field, we have constructed maps of the melting landscape T_m(H,r), viz., the melting temperature (T_m) at a given location (r) in the sample at a given field (H). A study of these melting landscapes reveals an unexpected feature: the melting landscape is not fixed, but changes rather dramatically with varying field and temperature along the melting line. It is concluded that the changes in both the scale and shape of the landscape result from the competing contributions of different types of quenched disorder which have opposite effects on the local melting transition.Comment: Paper presented at the International Symposium on Advances in Superconductivity & Magnetism: Materials, Mechanisms & Devices September 25-28, 2001, Mangalore, India. Symposium proceedings will be published in a special issue of Pramana - Journal of Physic

    Lower critical field H_c1 and barriers for vortex entry in Bi_2Sr_2CaCu_2O_{8+delta} crystals

    Get PDF
    The penetration field H_p of Bi_2Sr_2CaCu_2O_{8+delta} crystals is determined from magnetization curves for different field sweep rates dH/dt and temperatures. The obtained results are consistent with theoretical reports in the literature about vortex creep over surface and geometrical barriers. The frequently observed low-temperature upturn of H_p is shown to be related to metastable configurations due to barriers for vortex entry. Data of the true lower critical field H_c1 are presented. The low-temperature dependence of H_c1 is consistent with a superconducting state with nodes in the gap function. [PACS numbers: 74.25.Bt, 74.60.Ec, 74.60.Ge, 74.72.Hs

    On the Electric Breakdown in Liquid Argon at Centimeter Scale

    Get PDF
    We present a study on the dependence of electric breakdown discharge properties on electrode geometry and the breakdown field in liquid argon near its boiling point. The measurements were performed with a spherical cathode and a planar anode at distances ranging from 0.1 mm to 10.0 mm. A detailed study of the time evolution of the breakdown volt-ampere characteristics was performed for the first time. It revealed a slow streamer development phase in the discharge. The results of a spectroscopic study of the visible light emission of the breakdowns complement the measurements. The light emission from the initial phase of the discharge is attributed to electro-luminescence of liquid argon following a current of drifting electrons. These results contribute to set benchmarks for breakdown-safe design of ionization detectors, such as Liquid Argon Time Projection Chambers (LAr TPC).Comment: Minor revision according to editor report. 17 pages, 15 figures, 2 tables. Turboencabulato
    • …
    corecore